Latest Event Updates

How Esri CityEngine powered Disney’s Zootopia?

Posted on Updated on

Brandon Jarratt took GIS professionals behind the scenes of animated city creation at the Esri User Conference, being held this week in San Diego. Jarratt served as general technical director for Disney’s Zootopia, which won the 2016 Academy Award for Best Animated Feature Film. Jarrett took the stage during the plenary session to describe how the Zootopia team used Esri CityEngine software to create the complex city that serves as the backdrop for the movie.

Jarratt said Disney animated features need three elements: compelling stories, appealing characters, and believable worlds. That’s believable worlds, not realistic worlds.

(Disney animated movie elements. (Photo: T. Cozzens))

In this case, the complex city of Zootopia had to be designed from the ground up as a complex city with various districts designed to accommodate the vast array of animal species. In the world of Zootopia, humans don’t exist. Transportation systems, houses, streets, and services need to accommodate animals as tall as giraffes and as small as a shrew. To meet these challenges, the designers turned to Esri CityEngine and its multi-scaling feature. The Zootopia world also needed to incorporate various habitats, or in this case, districts. At the centre a large complex city dominates.

CityEngine was used in the creation of the city in Big Hero 6 as well. In Big Hero 6, the base city geography used was San Francisco, upon which Japanese-style buildings were placed. In all, 80,000 buildings were incorporated into San Fransokyo.

(San Fransokyo in Big Hero 6. (Image: Disney))

Zootopia, on the other hand, was built from scratch – including the terrain. The team started with research of various landscapes to create a basemap.

(Zootopia concept map. (Photo: T. Cozzens))

At the city-building stage, CityEngine’s custom tool was used to lay down streets. Buildings were designed for each district. The building styles couldn’t be repeated too often, or the city would look unrealistic, Jarratt said. The designers used carefully calibrated mix rules to keep the cities lively.

(The desert area of Sahara Square is made of 61,000 parts, including buildings, wall segments and palm trees. (Image: Disney))

The ability in CityEngine to change the makeup of a city, adjusting the frequency of the various parts, made it easy for the illustration team to meet the art director’s requirements. When he wanted more skyscrapers or buildings of a certain design, the team was able to provide new concept images the same day.

(Zooptopia being built in Esri CityEngine. (Photo: T. Cozzens))

Esri’s CityEngine GIS technology is used by city planners to design our future smart cities. “It’s so similar to how city planners create real cities,” said Esri President Jack Dangermond. He then presented Jarratt with Esri’s first-ever Best Animated Feature Using GIS award.

Source

Visualizing the Changing Planet with Landsat Explorer Web App

Posted on Updated on

The new Landsat Explorer web app from Esri enables users to wield Landsat imagery to explore geology, vegetation, agriculture, and cities anywhere in the world. The app, driven by publicly accessible image services, offers a way to better visualize the planet and understand how the earth has changed over time.

(A false color band combination, where vegetation appears in red, delineates the Exumas Islands in the Bahamas. With the Scatter Plot tool, users can select two bands to plot on a graph, with the more frequent occurrences appearing on this graph in red.)

Using the app is simple: Open it in a web browser, search for a location, and apply analysis tools on the fly to get immediate, dynamic results. With no download required, Landsat Explorer users get instant, interactive access to an extensive collection of multispectral, multi temporal Landsat imagery.

Landsat satellites have been collecting information about the earth’s surface for almost 45 years. Each Landsat image contains multiple bands of spectral data gathered at different wavelengths. More than just offering pictures of the planet, Landsat’s different bands can be combined and analyzed to learn about what is happening on the ground, beyond what the eye can see.

Beyond enabling users to instantly view half a million Landsat images using different band combinations or enhancements, Landsat Explorer offers extensive analytical capabilities. The visualization and analysis tools let users do the following, all on the spot:

  • Visualize the data using custom indexes and band combinations
  • Filter and select specific dates to analyze and compare
  • Interactively compare two images using a swipe tool
  • Create custom masks
  • Perform change detection
  • Generate spectral and temporal profiles
  • Create scatter plots using spectral bands
  • Add data (city roads, for example) from ArcGIS Online

Landsat Explorer joins Esri’s existing suite of Landsat apps, including the Landsat Arctic and Antarctic Apps. Whether users answer their own questions by applying Landsat Explorer’s powerful analysis tools or take the small leap to create their own imagery apps, it’s never been simpler to instantly visualize and dynamically analyze the earth’s surface.

Source

Landsat Explorer

Communication satellite GSAT-17 launched from French Guiana

Posted on Updated on

ISRO’s new communication satellite

  • Launched on: June 29 at 2.45 a.m. [IST]
  • Mass: 3,477 kg
  • Life: 15 years
  • Cost: ₹ 1,013 crore, including launch fee
  • Launch vehicle: European booster Ariane-5 ECA / VA238

GSAT-17, the country’s newly launched communication satellite, will soon join the fleet of 17 working Indian communication satellites in space and augment their overall capacity to some extent. The 3,477-kg spacecraft was released into a temporary orbit in space as planned at 2.45 a.m. [a.m.] IST on Thursday about 39 minutes after launch from the European spaceport of Kourou in French Guiana. It was dusk at the South American near-equatorial spaceport.

(Image Source: The Hindu (www.thehindu.com)

GSAT-17 was sent up as the second passenger on the European booster, Ariane-5 ECA VA-238, according to ISRO and the European launch company Arianespace. GSAT-17, built mainly for broadcasting, telecommunication and VSAT services, carries over 40 transponders. It also has the equipment to aid Meteorology forecasts and search and rescue operations across the sub-continent.

“GSAT-17 is designed to provide continuity of services of operational satellites in C, extended C and S bands,” ISRO said. The satellite was released into what is called a temporary `geosynchronous transfer orbit’ or GTO, where it started orbiting distant 249 km at the near end to Earth and 35,920 km at the farthest point. Its operations were immediately taken over by the spacecraft command team at the ISRO Master Control Facility in Hassan.

“Preliminary health checks of the satellite revealed its normal functioning. In the coming days, orbit raising manoeuvres will be performed to place GSAT-17 in the geostationary orbit (36,000 km above the equator) by using the satellite’s propulsion system in steps,” ISRO said.

It normally takes around two weeks to reach and settle in its planned slot over India at 93.5° East longitude. Meanwhile, its various functional appendages such as antennas and solar arrays are deployed. The spacecraft was approved in May 2015 with an outlay of ₹1,013 crore, including its launch fee and insurance. Its co-passenger was the 5,700-kg Hellas Sat 3-Inmarsat S EAN shared by two satellite operators.

ISRO Chairman A.S. Kiran Kumar has earlier said they need double the number of communication spacecraft to support various users across the country. ISRO does not yet have a launcher that can lift payloads above 2,000 kg. As such it must hire foreign launch vehicles — mostly of Arianespace — to put its heavier communication spacecraft in orbit. Only this month, it tested its first GSLV-Mark III vehicle which can do this job for it.

“Today, GSAT-17 became India’s third communication satellite to successfully reach orbit in the past two months,” said an official release. It launched GSAT-19 on the new MkIII on June 5 and the 2,230-kg GSAT-9 or the South Asia Satellite on May 5, both from Sriharikota.

Designed and assembled at the ISRO Satellite Centre in Bengaluru, GSAT-17 has been at the Kourou space port since May 15, undergoing pre-launch checks and tests. Project Director Prakash Rao and a rotating team of over 20 ISRO engineers were attending to it during the period, said an ISRO official.

GSAT-17’s co-passenger has two operators. Hellas Sat 3 provides direct to home television and telecom services across Europe, West Asia and South Africa. Global satellite operator Inmarsat will provide in-flight Internet facilities for European airlines, as signified in the satellite’s tag EAN or European Aviation Network.

ISRO

Source

ArianeSpace

The Benefits and Challenges of UAVs

Posted on

Benefits and Challenges of UAVs

Classification of UAVs

Classification of Drones by Size

Large Size Drones

These drones are used in the attack, combat and reconnaissance roles. Large size UAVs can fly to a very long distance without recharging or refueling. Large attack systems can carry missiles that can be fired remotely after observing and locking in the target. Reconnaissance UAVs are used to observe and secure a very large area.

Medium Size Drones

This range of drones is generally used in reconnaissance or to gather data. Such units are deployed in military, commercial, industrial and agricultural fields.

Small Size Drones

These drones are the most widely used units. UAVs of this size are used by commercial establishments, government departments, professional photographers and hobbyists.

Miniature Drones

These units are used for very specific purpose. Miniature drones have been developed for military usage. The device is small enough to fit in the palm. Military personnel use it for spying during a close combat mission. It can be used to view the inside of a standing or damaged building during search and rescue operations.

Classification by Design

Aircraft Design

This type of UAV has propeller on the tail or nose. Some wing design units have propellers on the wings. Jet propulsion is also used in large UAVs. There are small units that can be launched even from hand but larger units require a small runway to get off the ground. The advantage of this design is that this type of UAV consumes lower amount of energy compared to UAV with tilt rotor design.

Tilt Rotor Design

This type of UAV is also called quadcopter because of use of four rotors for lift and propulsion. It can lift off and land anywhere in the same way as a helicopter. These UAVs are the most widely used units due to ease of launching and landing. There is no need of runway or catapult to launch the aircraft.

Classification by Usage

Military

UAVs have been used widely in attack and combat roles. Military use of drones includes reconnaissance and observation from the sky. Cargo drones are used to supply weapons and cargo to the military units.

Commercial

There are a wide range of commercial applications of drones. A camera equipped drone is used to map an area. It helps know if the proposed construction site is suitable for construction of a particular structure. UAV is used in commercial sector to take photos and videos of buildings, construction sites and ground areas. Real estate developers use such photos and videos to advertise their building projects.

Agricultural

Farmers use drones to spray pesticides, fertilizers and other chemicals. Special camera and sensors are used to spot problems in the crops. Diseased parts of the crop can be spotted early. Different types of data related to the farm, crop, land and atmospheric conditions can be collected. This data is used to ensure healthy crop and successful harvest.

Police

Law enforcement agencies use drones to fight crimes. They use it for surveillance of a suspected target. Real time surveillance is useful during active crime scenes where sending the police personnel without knowing the ground situation can be dangerous.

3D Mapping

Advance 3D imaging equipment installed in a drone is used to survey landscape. Thousands of high quality images are stitched together to create precise and high definition 3D map of a ground area. It gives a better understanding of the geographical features of the area.

Disaster Relief

It is difficult to know the magnitude of destruction immediately after a disaster. There is urgent need to find the ground information quickly. Sending search and rescue teams to such an area without prior knowledge of ground conditions may result in waste of precious time. A UAV helps know exact locations where help is needed.

Hunting Hurricane

Drones equipped with scientific equipment are used to observe storms and other natural disasters. The data collected and analyzed from such operations are used to develop predictive models that help predict an impending disaster with better accuracy.

Product Delivery

This type of commercial venture is yet to take off due to regulatory constraints. However, many companies are working actively in this field. It is going to be a lucrative field for the sellers of products.

Research and Development

Scientists use drones to gather different types of data related to the ground, sea and air. They can find useful data without sending several teams to the target locations. Accurate scientific data from various locations can be collected quickly and easily.

Reconnaissance

UAVs are now used widely to protect border areas from intruders. It helps gather intelligence information in the battlefield. The information proves useful in protecting borders, combat units and security installations. Military personnel can avoid high risk missions or go to such missions with better information of the ground situation

General Users

Hobbyists use small size drones for recreational purposes. These units are used to enjoy the thrill of flying an aircraft. Now many UAVs made for general users have camera to take photos and videos. Some new UAV models can follow the moving drone pilot. There are strict drone flying rules and regulations that hobbyist drone operators must know.

There are various problems, issues and challenges associated with UAVs. It is difficult to regulate flying of small drones. Thousands of small drones are sold every year. These products are available easily online and offline. A small drone can be built even by a novice using easily available parts from the Internet. Even a small drone poses high safety risks to large planes and ground installations like fuel depots. There are occasional instances where operators lose control of their UAV during the flight. There have been no serious accidents so far but there are many reports of criminals using drones to supply illegal and banned items into prisons. The insurance aspect is not fully defined and developed. There are privacy risks to people. Drones can fly high and record visible parts of a private property. It can be used to look inside homes through windows.

Government authorities have been trying to overcome these challenges with proper regulations. There are many rules and regulations for UAV ownership and operations and law enforcement agencies are already using different technologies to stop rogue UAVs. The options include signal jamming as well as capturing and attacking to bring down the rogue UAVs.

The drone industry is also advancing at a rapid pace. Large numbers of UAVs are being sold and used all around the world, and the market for military drones is expected to exceed $10 billion by 2017. Private UAV sales are expected to cross $82 billion in the first 10 years. At the same time, the drone industry is expected to generate more than 100,000 jobs. Use of such technologies help improve living conditions. There are benefits and challenges in use of UAVs. Governments are trying to keep pace with these developments by framing proper rules and regulations.

Source 1

Source 2

ISRO Develops “Solar Calculator” Android App

Posted on

Computation of solar energy potential is essential to select the locations for solar photovoltaic (PV) thermal power plants. The use of remote sensing observations from geostationary satellite sensors is ideal to capture space-time variability of surface insolation. An android App for the computation of solar energy potential has been developed by Space Applications Centre (SAC), ISRO, Ahmedabad at the behest of Ministry of New and Renewable Energy, Govt. of India. It is a very useful tool for installation of PV solar panels for tapping solar energy.

The App provides monthly/yearly solar potential (in kWh/m2) and minimum/maximum temperature at any location. It also displays the location on the satellite image and provides azimuth/elevation angles as well as day length over different time periods in a year.

Following are the major features of the App:

  • The App provides solar energy potential (in kWh/m2) at any given location.
  • The required location can be keyed in or can be obtained through GPS.
  • It gives monthly and yearly solar potential processed using Indian Geostationary Satellite data (Kalpana-1, INSAT-3D, and INSAT-3DR). It also offers monthly minimum and maximum temperature to calculate realistic solar potential.
  • The location is displayed on the image with satellite data in the background.
  • It also provides azimuth and elevation angles, and day length over different time periods in a year.
  • Obstruction of sunlight due to terrain is also calculated using Digital Elevation Model (DEM).
  • It also suggests optimum tilt angle for solar PV installation.
  • This App needs an internet connection to calculate the results.
  • The complete report can be saved as a PDF file.

 

The App can be downloaded from “New and Renewable Energy” section at vedas.sac.gov.in

Source

Survey of India Launches Web Portal to Download Maps

Posted on Updated on

The Survey of India (SOI) has launched new web portal called Nakshe to make open series maps available to Indians for free.

Organization : Survey of India (SOI)
Headquarters: Dehradun
Founder: East India Company
Founded: 1767

Capture

The portal was launched by Union Minister for Science & Technology and Earth Sciences, Harsh Vardhan on the occasion of 250th anniversary of SOI.

Features of Nakshe Portal

It will offer a free download of 3,000 Topographic maps or Open Series Maps (OSM) in a pdf format on 1:50,000 scale through Aaadhar enabled user authentication process. The maps are meant for development activities in the country and can be also used to plan scientific expeditions, research, and planning development projects. Topographic maps or OSM comprise natural and man-made geographical features including terrain or topography.

The SoI has a rich collection of over 5,000 maps. While it made 3,000 maps open to the public for download, 1700 will be available for downloading soon. The remaining maps are awaiting clearance. Under the National Map Policy 2005, it had become necessary to make non-defence maps accessible for public. “Earlier, even government departments had to pay some amount to get the maps from Survey of India. We have relaxed that norm now,” Ashutosh Sharma, secretary, the ministry of Science and Technology, said. Harsh Vardhan said the SoI is also awaiting clearance from Nepal to measure the height of Mt. Everest post-2015 earthquake.
About Survey of India (SOI)
SOI is the principal mapping agency of the country. It comes under the Department of Science & Technology. Its origin can be traced back to The year 1767, making it oldest scientific department in India and one of the oldest survey establishments in the world. It prepares maps for defense and civilian purposes and is considered a standard reference for the shape, extent and geographic features of the country. SOI has surveyed and mapped each and every part of the country and these maps have played a valuable role in nation building and were pivotal in almost all major developmental activities of modern India.

Note: Foundation for the scientific survey and mapping of the country was laid with The Great Trigonometric Survey (GTS) in the 19th century on 10th April 1802, by noted surveyors Col. Lambton and Sir George Everest. Interestingly, Everest has been named after former Surveyor General of India Col Sir George Everest. The measurement of the world’s highest peak has been made by the SoI.

Source

Link-1

Link-2

Nakshe Portal

NASA Releases Software Catalog, Free Access to Technologies for Earthly Applications

Posted on Updated on

NASA has released its 2017-2018 software catalog, which offers an extensive portfolio of software products for a wide variety of technical applications, all free of charge to the public, without any royalty or copyright fees.

Available in both hard copy and online, this third edition of the publication has contributions from all the agency’s centers on data processing/storage, business systems, operations, propulsion, and aeronautics. It includes many of the tools NASA uses to explore space and broaden our understanding of the universe. A number of software packages are being presented for release for the first time. Each catalog entry is accompanied with a plain language description of what it does.

“The software catalog is our way of supporting the innovation economy by granting access to tools used by today’s top aerospace professionals to entrepreneurs, small businesses, academia, and industry,” said Steve Jurczyk, associate administrator for NASA’s Space Technology Mission Directorate (STMD) in Washington. “Access to these software codes has the potential to generate tangible benefits that create American jobs, earn revenue and save lives.”

The new NASA Software Catalog includes the code LEWICE, developed to help study the effects of ice on an aircraft in flight.

NASA published the first edition of its software catalog in April 2014, becoming the first comprehensive listing of publicly available software to be compiled by a federal government agency — the largest creator of custom code. Since then, NASA has shared thousands of its software programs with students, industry, individuals and other government agencies.

“Software has been a critical component of each of NASA’s mission successes and scientific discoveries. In fact, more than 30 percent of all reported NASA innovations are software,” said Dan Lockney, NASA’s Technology Transfer program executive. “We’re pleased to transfer these tools to other sectors and excited at the prospect of seeing them implemented in new and creative ways.” (The new NASA Software Catalog includes the code LEWICE, developed to help study the effects of ice on an aircraft in flight and to help create ice detection systems. Credits: NASA)

Some of the software available include codes for more advanced drones, and quieter aircraft. While access restrictions apply to some codes, NASA has automated and updated its software release process over the last two years to ensure that it is as quick, easy and straightforward as possible.

The software catalog is a product of NASA’s Technology Transfer program, managed for the agency by STMD. The program ensures technologies developed for missions in exploration and discovery are broadly available to the public, maximizing the benefit to the nation.

Source

NASA’s Software Website

Software Catalog